Regulation of lipid accumulation in oleaginous micro-organisms.
نویسنده
چکیده
A small number of eukaryotic micro-organisms, the oleaginous species, can accumulate triacylglycerols as cellular storage lipids, sometimes up to 70% of the biomass. Some of these lipids, particularly those containing high proportions of polyunsaturated fatty acids of nutritional and dietary importance, are now in commercial production; these are known as single-cell oils. The biochemistry of lipid accumulation has been investigated in yeasts and filamentous fungi and can now be described in some detail: lipid accumulation is triggered by cells exhausting nitrogen from the culture medium, but glucose continues to be assimilated. Activity of isocitrate dehydrogenase within the mitochondrion, however, now slows or even stops due to the diminution of AMP within the cells. This leads to the accumulation of citrate, which is transported into the cytosol and cleaved to acetyl-CoA by ATP:citrate lyase, an enzyme that does not occur in non-oleaginous species. This enzyme is therefore essential for lipid accumulation. The presence of this enzyme does not, however, explain why different species of oleaginous micro-organisms have different capacities for lipid accumulation. The extent of lipid accumulation is considered to be controlled by the activity of malic enzyme (ME), which acts as the sole source of NADPH for fatty acid synthase (FAS). If ME is inhibited, or genetically disabled, then lipid accumulation is very low. There is no general pool of NADPH which can otherwise be used by FAS. The stability of ME is therefore crucial and it is proposed that ME is physically attached to FAS as part of the lipogenic metabolon. ME activity correlates closely with lipid accumulation in two filamentous fungi, Mucor circinelloides and Mortierella alpina. When ME ceases to be active, lipid accumulation also stops. No other enzyme activity shows such a correlation.
منابع مشابه
Comparative Proteomics Profile of Lipid-Cumulating Oleaginous Yeast: An iTRAQ-Coupled 2-D LC-MS/MS Analysis
Accumulation of intracellular lipid in oleaginous yeast cells has been studied for providing an alternative supply for energy, biofuel. Numerous studies have been conducted on increasing lipid content in oleaginous yeasts. However, few explore the mechanism of the high lipid accumulation ability of oleaginous yeast strains at the proteomics level. In this study, a time-course comparative proteo...
متن کاملOil accumulation by the oleaginous diatom Fistulifera solaris as revealed by the genome and transcriptome.
Oleaginous photosynthetic organisms such as microalgae are promising sources for biofuel production through the generation of carbon-neutral sustainable energy. However, the metabolic mechanisms driving high-rate lipid production in these oleaginous organisms remain unclear, thus impeding efforts to improve productivity through genetic modifications. We analyzed the genome and transcriptome of ...
متن کاملA biochemical explanation for lipid accumulation in Candida 107 and other oleaginous micro-organisms.
The biochemical explanation for lipid accumulation was investigated principally in Candida 107 and, for comparison, in the non-oleaginous yeast Candida utilis. There were no significant differences between these two yeasts in their control of glucose uptake; in both yeasts, the rates of glucose uptake were independent of the growth rate and were higher in carbon-limited chemostat cultures than ...
متن کاملThe effects of TORC signal interference on lipogenesis in the oleaginous yeast Trichosporon oleaginosus
BACKGROUND Oleaginous organisms are a promising, renewable source of single cell oil. Lipid accumulation is mainly induced by limitation of nutrients such as nitrogen, phosphorus or sulfur. The oleaginous yeast Trichosporon oleaginosus accumulates up to 70% w/w lipid under nitrogen stress, while cultivation in non-limiting media only yields 9% w/w lipid. Uncoupling growth from lipid accumulatio...
متن کاملTime-series lipidomic analysis of the oleaginous green microalga species Ettlia oleoabundans under nutrient stress
Background Microalgae are uniquely advantageous organisms cultured and harvested for several value-added biochemicals. A majority of these compounds are lipid-based, such as triacylglycerols (TAGs), which can be used for biofuel production, and their accumulation is most affected under nutrient stress conditions. As such, the balance between cellular homeostasis and lipid metabolism becomes mor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 30 Pt 6 شماره
صفحات -
تاریخ انتشار 2002